One Stop Myndighetsshop / One Stop shop for Laws and Permits

English below.

Under hösten så har Johannas Stadsodlingar, Tebrito och Ecoloop arbetat tillsammans med flera myndigheter i ett projekt som heter One Stop Myndighetsshop. Livsmedelsverket har varit ledande myndighet och har arbetat tillsammans med konsultfirman Antrop.

One Stop Myndighetsshop har beskrivits som:

En myndighetsöverskridande samverkansmodell för att framtidssäkra en hållbar och attraktiv matsektor med innovationshöjd i toppklass.

Från slutpresentationen

Johannas och Tebrito valdes ut av myndigheterna för att det väl representerar många av de utmaningar som finns med gamla lagar, regler och praxis som skapades för ett linjärt matproduktionssystem, nu när vi ställer om till cirkulära metoder.

Slutpresentationen livesändes och kan hittas här på YouTube.

English

During the autumn, Johannas Stadsdodlingar, Tebrito and Ecoloop worked together with several authorities in a project called One Stop Myndighetsshop (One Stop shop for Laws and Permits). The Swedish Food Agency has been the leading authority and has worked together with the consulting firm Antrop.

One Stop Myndighetsshop has been described as:

A multi-agency collaboration model to future-proof a sustainable and attractive food sector with top-class innovation.

From the final presentation in the project.

Johannas and Tebrito were selected by the authorities because they represent well many of the challenges that exist with old laws, regulations and practices that were created for a linear food production system, now that we are switching to circular methods.

The final presentation was broadcast live and can be found above on YouTube.

Ett nytt projekt för policy stöd runt runt en cirkulär värdekedja för livsmedel / A new project for policy support regarding a circular food supply chain

English below.

Vårt forsknings- och utvecklingskonsortium har fått ytterligare ett projekt beviljade inom cirkulär matproduktion.

Målet med projektet är att ta fram underlag för fortsatt stöd till myndigheter kring regelverk och policys, både nationellt och på EU-nivå, runt en cirkulär värdekedja för livsmedel och samtidigt främja ett proteinskifte genom insekter. Projektet sammanfogar och fortsätter arbetet från flera av de tidigare projekten.

Läs mer om projektet.

English

Our research and development consortium has had another project granted in circular food production.

The goal of the project is to develop a basis for continued support to authorities regarding regulations and policies, both nationally and at EU level, around a circular value chain for food and at the same time promote a protein shift through insects. The project joins and continues work from several of the previous projects.

Ytterligare två nya sammarbetsprojekt inom cirkulär matproduktion / A further two new collaboration projects in circular food production

English below.

Det är ett rent nöja att kunna berätta att våra forsknings- och utvecklingskonsortium har fått ytterligare två nya projekt beviljade inom cirkulär matproduktion.

Det första är ett projekt som heter: Framtidens foder för fågel, fisk och fläsk. Målet med projektet är att skala upp de pilotprojektet som utförts tidigare (Fem to grön fisk i disk) där restströmmar från livsmedelsindustrin blir foder för insekter, som sedan blir del av fodret för fjäderfä, fisk och gris. Projektledningen för projektet är SLU och Axfoundation.

Det andra projektet heter: Integrerat cirkulärt, klimattåligt och mycket hållbart livsmedelsproduktionssystem. Målet med projektet är att skala upp ett cirkulärt livsmedelsproduktionssystem till en mer industriellt relevant demonstrator. Det bygger vidare på ett tidigare projekt: Akvaponi i en digital värld.

English

It is a pure pleasure to be able to tell you that our research and development consortia have received two more new projects granted in circular food production.

The first is a project called: Future feed for poultry, fish and pork. The goal of the project is to scale up the pilot project that was carried out earlier (Five to green fish in a dish) where waste streams from the food industry become feed for insects, which then become part of the feed for poultry, fish and pigs. The project management for the project is SLU and Axfoundation.

The second project is called: Integrated circular, climate-resistant and highly sustainable food production system. The goal of the project is to scale up a circular food production system into a more industrially relevant demonstrator. It builds on an earlier project: Aquaponics in a digital world.

Två nya projekt inom cirkulär matproduktion / Two new projects in circular food production

English below

Våra forsknings- och utvecklingskonsortium har fått två nya projekt beviljade inom cirkulär matproduktion.

Det första är ett projekt som heter: Cirkulärt matavfall blir mat igen. Projektet kommer att genomföra forskningsexperiment för datainsamling för att möjliggöra riskbedömningar. Uppgifterna ska validera hypoteser om hur regleringar skulle kunna bli mer effektiva och anpassade för en framtid där vår hantering av matavfall kan bli cirkulär. För mer information, kontakta: Fredrick Regnell på Ecoloop.

Det andra projektet heter: Datainsamling för hållbar maskininlärning inom cirkulär livsmedelsindustri/matproduktion. Projektet syftar till att skapa en gemensam standard för datainsamling och sedermera ML-modeller (Machine Learning) för effektivisering av cirkulär livsmedelsproduktion.

English

Our R&D consortium has had grants for two more projects approved around circular food production.

The first project which is called Circular food waste becomes food again (linked page in Swedish). The project will execute research experiments to produce data to make risk assessments. The research is to validate the hypnotises around how rules and regulations could become more effective and adjusted for a future where our handling of food waste become more circular. For more information, contact: Fredrick Regnell at Ecoloop.

The second project is called: Data collection for sustainable machine learning within a circular food industri/circular food production (linked page in Swedish). The goal of the project is to create a common standard for data collection and Machine Learning modells for optimisation of circular food production.

Cirkulär matproduktion, lagar och regler, går det ihop?

Fungerar dagens lagar och regler väl ihop med matproduktion som är baserad på kretslopp och cirkuläritet? Vad är utmaningarna och vad kan vi göra för att komma runt dessa?

Thomas Bjelkeman-Pettersson, från Johannas, deltog i ett rundabordssamtal på Miljöbalksdagarna som arrangeras av Naturvårdsverket. Runt bordet fanns också representanter från Naturvårdsverket, Vinnova (Innovationsmyndigheten), samt en filosof. Samtalet blev en riktig djupdykning i ämnet.

Musselodling som en del av ett förnybart näringskretslopp

Nästan alla känner till att vi behöver byta till förnybara källor för energi och sluta använda fossila energikällor. Inte like uppmärksammat är att vi behöver sluta använda fossila källor för näring för vår mat. Fosfor bryts på flera platser i världen. Bara i USA så bröts 27 miljoner ton fosfor under 2015.1

Fosfor använd inom jordbruk som del av de gödningsmedel som behövs för effektiv produktion. Jordbruksverket uppskattar att 0,4 kg fosfor/hektar mark läcker ut till havet.2 Med 3,3 miljoner hektar jordbruksmark i Sverige så blir det en del fosfor som går till havet. Jordbruksverket uppskattar att skogsbruket och jordbruket står för ungefär 1000 ton fosfor som går till havet varje år, vilket är ungefär hälften av all fosfor som läcker från mänskliga processer.3

Ett annat näringsämne som är kritiskt för växtodling är kväve, i form av nitrat. Det bryts inte i gruvor som fosfor, utan utvinns med en kemisk process, Haber–Bosch-processen, som använder mycket energi. Idag är det i huvudsak fossil energi som används.4

Hur uppnår vi förnybara näringskretslopp som gör att vi kan minska användande av fossila näringsämnen eller processer? Professor Anders Kiessling, SLU, berättar här hur vi skulle kunna använda musselodlingar i haven, som i Östersjön, för just det ändamålet.

Den första videon är en fem minuter lång sammanfattning.

Den andra video är 25 minuter lång, mer djupgående beskrivning av hur detta kan fungera.

1) Fosfatbrytning i USA, Wikipedia. (Engelska).
2) Fosforförluster från jordbruksmark – vad kan vi göra för att
minska problemet?
Jordbruksinformation 27 – 2008, Jordbruksverket (PDF)
3) Ibid
4) Haber Bosch-processen, Wikipedia. (Engelska)

Musselodling kan vara en effektiv miljöåtgärd i Östersjön, men det slutar inte där

Musselodling som ett sätt att lyfta näringsämnen från Östersjön tillbaka i kretsloppsbaserad matproduktion tror vi kommer att vara väldigt effektivt i framtiden. Vi är inte ensamma om den åsikten. Vi samarbetar i flera projekt med Anders Kiessling, Professor i akvakultur på SLU och med Aleksandar Vidakovic, forskare på SLU. Det var båda författare till en rapport 2019 som heter, ”Musselodling i Östersjön som miljöåtgärd – nya positiva data från tre pågående EU projekt”.

Utrustning för skörd från en musselodling i St Anna skärgård, Mats Emilsson driver detta. Bild: Thomas Bjelkeman-Pettersson, Johannas.

Data från testodlingar under flera år visar att det kan inte bara vara ett bra och ekonomiskt sätt att lyfta överskottsnäring från Östersjön, men det fungerar också bättre än man trodde tidigare.

Mats Emilsson som vi ser här på bilderna har jobbat i flera år med att design förbättrade metoder och redskap anpassade för odling av musslor i Östersjön. Mats jobbar med det på Vattenbrukscentrum Ost.

Skörd av musslor i St Anna Skärgård, Mats Emilsson. Bild: Thomas Bjelkeman-Pettersson, Johannas.

Johannas jobbar ihop med Anders Kiessling och Aleksandar Vidakovic för att testa nya recept för fiskfoder, delvis baserat på musslor, men också på insekter uppföda på plantbaserat matsvinn från matproduktion, som är dela av vårt projekt Matsvinn 2. Slutmålet är ett fiskfoder helt baserat på regionala resurser, som ingår i de kretsloppssystem som vi designar och bygger, med förbättrad Östersjö-havsmiljö, minskad import av soja, fiskmjöl och fiskolja som del av foder, bättre foder för fisken och mindre miljöpåverkan från vår produktion.

Läs mer om resultat från musselodlingar i Östersjön: Musselodling i Östersjön som miljöåtgärd – nya positiva data från tre pågående EU projekt”.

Podcast: Spårbarhet och transparens med blockkedja

Något som binder samman alla våra projekt är digitalisering av processerna. Nu kan vi berätta att vi har ett samarbete med IBM Accelerator Sweden och ATEA Sverige där vi jobbar med att bygga en integration av de data system som vi använder med IBM FoodTrust.

Lyssna på en podcast från Techradar om vårt samarbete med IBM Accelerator Sweden.

Techradar podcast: Från mikroekosystem till makrosamarbeten

Vi vill gärna välja ekologiskt och närproducerat – men hur kan vi veta vad det egentligen är vi har på tallriken, hur ska vi kunna följa varje råvara från producenten till affären och hur kan vi veta vad som har hänt på vägen?  Hör oss berätta om cirkulär odling, akvaponi, hållbarhet, miljö och om alla de utmaningar man kan ställas inför som en startup – och om hur IBM kan hjälpa till. Vi pratar också om hur en önskan att lämna planeten tillsammans med ett besök på en science fiction-mässa kan leda till att man börjar ägna sig åt kretsloppsbaserad odling.

Lyssna på podcasten från Techradar.

Build an aquaponic indoor farm – part 3 – build log

This is a description of how we at Johannas Stadsodlingar (urban farms) and Concinnity together have built Johanna’s aquaponic pilot facility. We want to share how we did it and our thinking behind it. There is quite a lot to think about, so there will be several posts to cover most things.

There are quite a few parts to the work of building a pilot plant for aquaponics. When we started, we thought it might take 9 months to do the job. We were wrong. It took almost two years. We worked mostly in the evenings and weekends during the first 9 months. After that, one of us started working full time in the company and during the past year we have also had additional help full time. We did not spend all the time building, but a large part of the time was spent on construction.

The building we are in a is an old farmhouse for cows, built in the eighties. It is 900 squremeters, and about 55 meters long and 16 meter wide internally.

IMG_7869

First we had to remove old equipment, such as the milk tank and the traverse for the feed wagon. Below, it is Micke who cuts the I-beam for the traverse where we would build the wall.

IMG_8650
IMG_7881

We chose not to use the entire building for the pilot plant, so needed to build a dividing wall. Here we see when Thomas, Micke and William are working on it.

IMG_8668 12 mikael thomas william wall building

The building had not been used (other than temporarily as a warehouse) for almost 15 years, see we needed to clean everything: walls, roof, cable ladders. It was a lot of work. Here Anke Johanna cleans the ceiling.

IMG_8684

We needed to inspect the drains to make sure they did not have any serious leaks. The drains are used to carry faeces from the fish to an external manure tank. Here Rasmus helps us to inspect the pipes.

IMG_9374

In the drain we found a toad that seem to live there during the winter.

IMG_E9376

We had decided to have an external sump tank. We needed to know that it could be dug at the location we chose and that it would not reach the bedrock, so we enlisted the help of a neighbor who dug a test hole with an excavator. The ”test hole” became large enough that we could improve it a bit by hand (William digs and Micke measures where to put the building) to later use as a hole for the sump tank. The hole was not really straight, as you can clearly see later.

IMG_9051

Work went a little slow so before we could work more on the sump tank and the building on top of it, the winter arrived and the hole was filled with groundwater and froze.

IMG_9557 We built a sump tank structure in wood, which Mikael was happy with, that we later dressed in a rubber lining. IMG_9339

The room that previously had the stall for the calves needed to be furnished to have a table for sowing and the small plants. We call it the cutting room or the calf room. First we needed a floor so we could install new drains.

image_from_ios

Here Mikael builds a table for the small plants, that will stand in water in trays.

IMG_9828

We thought for quite some time about how to hang the LED lights. In the end, it was a fairly simple construction in wood that actually works really well. Mikael came up with a good design in the end.

IMG_9866 IMG_9954 IMG_9960

The tables being covered by rubber lining.

IMG_0034

Building the large troughs for the plants was quite a lot of work, as the floor tilts quite a lot. We have a 10 cm difference between the highest and lowest point on the troughs at a distance of five to six meters. Each piece must be sawn perfectly and measured in place with a laser.

IMG_9898

We bought rainwater tanks with custom fitted rubber lining as fish tanks. Two tanks that hold approximately 9.5 cubic meters. We do not recommend that choice, but more on that later. Here Mikael cuts a hole for the outlet.

IMG_9924 IMG_9928

Piping with 110 mm PVC-U pipes from the fish tanks to the cultivation troughs. There you can also see the evacuation well that we created at the lowest point in the event of a flood. It turned out to be good to have in the future on several occasions.

IMG_0110

In parallel with this work, work was also underway to build our sensor system. Here, Stellan shows the first sensor hub, which measures slightly different things in the cutting room: light, temperature, humidity, carbon dioxide. We later added a sensor to the electricity meter. It also acts as a hub in the alarm system and has, among other things, an SMS modem.

IMG_0131

Here Gabriel is inspecting the first data packets that arrive to our data visualisation system which is based on Grafana and Graphite.

IMG_0136

Now we needed to connect the water system inside the building, fish tanks and cultivation troughs to the outside where the sump tank will be located. Mikael drills holes in the wall.

IMG_0237

Here you can see that our building is well insulated. We have about 15 cm of cellular plastic between the inner and outer wall.

IMG_0240

Then we started constructing the building where the sump tank is located. We needed to cast pillars on which the foundation will rest. It was really shitty weather when Mikael and William made the holes for them with a drill.

03 wet wet wet sump work

We prepare a stable and insulated base for the sump tank.

IMG_0257 IMG_0267

Then we lay the rubber lining that should be on the outside of the sump tank. (It’s made of wood, so it needs to be protected.) We got good help here from Stellan and Gabriel.

IMG_0271

The sump tank is put in place and then we put on the internal rubber lining.

IMG_0272 IMG_0277

The sump tank gets insulation. We also cover it up so that it doesn’t fill with rain until the roof gets built.

IMG_0296

Filling with gravel and soil around the sump tank. William drives his large back loader from Volvo, which we are very happy to have had access to.

IMG_0302 IMG_0358

A timelapse of pouring the concrete for the foundation of the sump house. The whole gang came out that day and helped.

Timelaps of pouring concrete for the sumptank building

Then we started to build the platform, or pier as we call it, around the fish tanks, on which the filter tank will also stand. We see William adding floor boards.

IMG_0332 IMG_0347 IMG_0400

The concrete floor that we have in the building is more or less in direct contact with the ground below, so we wanted to insulate the cultivation troughs. In addition, the rubber cloth becomes less sensitive if you have to walk on it if there is not a hard surface underneath. Here we have a timelapse of installing insulation, the rubber mat and the air hoses in one of the troughs.

Johannas Husby Farm Aquaponics, liner installation

We have installed air stones in the troughs to make sure that we do not get stagnant water and enough oxygen for both the bacterial culture and the plants’ roots. It is possible that we went a bit overboard with the amount of stones.

IMG_1277

We also had to replace all the doors, which we got second hand.

IMG_0775

We insulated the fish tanks at the bottom, so that they came at the right height for the outlets and pipes. After the rubber lining was installed in the tanks, we covered them to avoid getting building dust in them.

IMG_0766 IMG_0891

To reduce the humidity in the main growing room, we chose to install a dehumidifier. It will be more expensive in the long run than installing proper ventilation, but for now we can make do with a dehumidifier.

IMG_1457

The it was time to build the sump tank building. That turned into many a late night.

IMG_0825 IMG_0962 IMG_0977

Installation of the air pumps. It was good that we had a well-insulated sump tank building to install them in. They make a lot of noise.

IMG_1141 IMG_1207

The electricity network where our facility is located is not good. So a backup generator is necessary. But, since we work with live animals, we must have reserve power anyway. Here comes an insulated container for the backup generator.

IMG_1310 IMG_1565

To maintain the right temperature in the water, we have an air-to-water heat pump. For emergencies, there is also an electric heating cartridge installed, which the reserve generator is able to handle the load from.

IMG_1496 IMG_1500

When the weather got better, we were able to finish the roof of the sump tank building (Tomas working on it) and paint it (Anke).

IMG_1731 IMG_1586

We also installed a plexiglass lid on the sump tank so it is easy to see that the air pumps work and that the water level is where we expect it to be.

IMG_1665

Detail of water piping, air hoses, water meter, electric wiring etc.

IMG_1620

When we started filling the system with water, it turned out that we did not do the right thing when we glued the pipes. Many of the pipes needed additional gluing before we got rid of all the leaks. It took several weeks of work. Tip: When gluing PVC-U pipes, have plenty of glue on both pipes. Rubber lining bushings must have suitable glue properly applied.

IMG_1701

Our first attempt to feed the pump for the drum filter used a 120 litre barrel and automatic filling with well water. We had problems with the drum filter flushing at the wrong time or for too long. For that the barrel did not hold enough water. We redesigned this completely. At first we switched to taking water from an IBC tank, but in the end we did what we were supposed to do from the beginning: take water from the clean side of the drum filter.

IMG_1657

We had to install a max water level sensor on the drum filter to regulate the flushing pump.

IMG_1743

When we were satisfied that the leaks were fixed and that the filter flushing worked well, Lisa added bacterial media to the bacteria tank (Moving Bed Bio Reactor – MBBR).

IMG_1837 IMG_1812

We fed the bacterial culture with a little ground up fish food, but mainly with food grade ammonium chloride in powder form. The ammonia was added to a bucket of water the day before it was to be used and then bubbled with an aquarium pump for 24 hours to get rid of some of the chlorine. When the nutrient levels started to rise (ammonium converted to nitrite and nitrite to nitrate) we started to grow plants in the troughs.

IMG_1898

Even without fish in the system and very low nutrient levels, we saw surprisingly good growth, which was even better when the fish arrived.

IMG_1937

But eventually the fish came to our system. Here Tomas talks to Peter who delivers our smolt. We use rainbow in our system from 50 grams to 1.2 kg.

IMG_1928

The sensor system measures a number of different parameters every minute. Here you can see some.

Screenshot 2021-01-10 at 15.36.20

The sensor system delivers data locally to a small computer, but also to our cloud service, so that we can access the data on our mobile phones around the clock, without opening the internal system to the outside.

IMG_2469

The sensor box in the sump tank house also talks to a weather station that sits on the roof. (Even when it is zero degrees outside, we have 30 C in the sump tank house, it may have been a little too well insulated …, the heat comes from the air pumps.)

IMG_2481

Inductive water sensor on the outlet pipes to the fish tanks. It is one of the systems that can send alarms directly to our mobile phones if the water stops flowing in the pipes.

IMG_2468

Automatic water filling for the sump tank. We take system water to rinse the drum filter. That water goes to the manure tank. The fish feces and that water eventually becomes manure for the fields around the farm. Now water recovery in our system is about 99.5%, which we think we can improve to 99.9% or better when we start processing the fish feces for reuse in the system (remineralising it) instead of making manure for the fields.

IMG_2541

A picture of the system in production. We have faster and better growth of our plants than we expected!

Growth at Johannas Stadsodlingar

In the next post, we will discuss a our sensor and data system.

The text in this posted is licensed under Creative Commons BY-NC-SA International.

Build an aquaponic indoor farm – part 2 – design

This is a description of how we at Johannas Stadsodlingar (urban farms) and Concinnity together have built Johanna’s aquaponic pilot facility. We want to share how we did it and our thinking behind it. There is quite a lot to think about, so there will be several posts to cover most things. 

Part 1 – to start, prior knowledge
Part 2 – design (this post)
Part 3 – building log 
Part 4 – water quality and nutrients testing
Part 5 – Production management

Our pilot facility consists of 290 m2 in an insulated building that was previously a cow barn for about 140 cows. The farm was built in the mid 80’s and was then very modern. We have taken a third of the space available in the farm building. The pilot plant uses three rooms: the large cultivation room, of approximately 220 m2, the seeding/sappling room 24 m2 and the ”packaging room” 20m2. The rest are side surfaces. 

In the pilot plant, we will grow leafy greens, spices and rainbow trout (yes, nitrification bacteria of course). 

The first design was based around IBC tanks and three cultivation troughs with 60 x 120 cm rafts. Outside the building there is an area reserved for the sump tank. The fish would be in IBC tanks. We thought of using a radial flow separator to remove the coarsest solid particles and a filter box for the finer particles. Just as described in The Aquaponic Farmer (see part 1).

One of the first designs of the Johannas aquaponic pilot facility (version 3).
2D drawing of one of the first designs (version 4).

In the floor plan above, you can see that we have already rethought using two cultivation troughs instead of three. A narrower trough for rafts from Meteor Systems and one with more traditional rafts from Royal Brinkman (120 x 60 cm). In the Meteor rafts, we use a smaller substrate plug with significantly less material consumption. In the Brinkman rafts we use plastic pots. We were not sure what would work best in the Swedish market, so we wanted to try both.

Since we have a concrete floor, we can not have part of the filter system below the throughs easily, so we investigated other options for the filters. We chose to have a small drum filter instead. At the same time, we began to wonder if the fish we had decided on, the rainbow, would not feel much better in round tanks. In addition, we realized that the sump tank would need proper protection, so we started planning a building over the tank. Eventually, that building became our engine room as well. It turned out that this was very good, but it was a lot of work.

To have better access to the room where we ship out vegetables, we turned the design so that the fish tanks are furthest from the packing room, while it also has less people moving around the fish tanks (the doors are not there) which reduces stress for the fish. The round fish tanks are also more volume efficient.

Round fish tanks and the design flipped 180 degrees (version 8).

In the final design (below) you can see that we added a ”pier” around the fish tanks. The tanks were so high that it would be better to be able to get up a little when working there, without having to stand on a footstool. At the same time, we wanted to get the filter tank (Moving Bed Bio Reactor, MBBR) up from the floor, as the water level in our design is determined by the outlet on the filter tank as well as avoid pipes on the floor so you do not have to step over them all the time. Despite a lot of thinking around this, some of it came out less than optimal. We have a higher water level than we think is good and it would be quite a lot of work to rebuild it to lower the level. But, as I said, the goal of a pilot plant is to learn.

Final design of the pilot facility (version 12).

The facility has 3782 growing places in the two troughs, approximately 3200 growing places (depending on which trays you use) in the tables in the sampling room. We can have a total of about 7000 plants in the system at the same time. 

The water tanks are 9.5 m3 each. We have an IBC tank as MMBR (1m3). The sump tank holds approximately 4 m2, but we normally use 2 m2 of the space. The cultivation troughs together hold approximately 23-25 m3 (depending on how high the water level we set). Together, the total system uses approximately 35 m3 of water. We also have an IBC tank that will be used as a quarantine for incoming fish and preparation tank before slaughter. 

On the far side of the building you can see the sump tank building (beyond the round fish tanks) and the blue cube is a three meter container that contains a diesel powered generator.

In the next blog post we will document our building process in a build logg.

The text in these posts are licensed under Creative Commons BY-NC-SA International.